StateSwitch_createExpInfo_dynamic_170829.m 26.8 KB
Newer Older
Julian Kosciessa's avatar
Julian Kosciessa committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
%_______________________________________________________________________
%
% Configuration for running dotsExperiment
%_______________________________________________________________________
%
% Output
%
% expInfo | configuration for state switch MAT (struct)

% Written by Julian Kosciessa (kosciessa@mpib-berlin.mpg.de)

% 170704    - incorporated thresholds
% 170809    - incorporated state dimensionality & accompanying
%               randomization changes
% 170814    - introduce run format; adapted timing
% 170816    - changed to expInfo format; fixed randomization
% 170823    - changed randomization to account for switch probability
% 170829    - included RT feedback

function expInfo = StateSwitch_createExpInfo_dynamic_170829

    expInfo.trialsPerAtt = 16;  % number of trials within state order & attribute (half of this for each choice) 
    expInfo.numOfAtt = 4;       % number of attributes to be included
    expInfo.numOrders = 4;
    expInfo.totalTrials = expInfo.trialsPerAtt*expInfo.numOfAtt*expInfo.numOrders;
    
    %expInfo.runAmount = 4;      % number of runs; each run should have each category x times
        
    expInfo.durBlockOnset = 5;  % duration of block onset
    expInfo.durFixCue = 2;      % duration of fixcross with cues
    expInfo.durCue = 0;         % duration of cue
    expInfo.durPres = 3;        % duration of presentation
    expInfo.durResp = 2;        % duration of question
    expInfo.durConf = 0;        % duration of confidence
    expInfo.durReward = 3;      % duration of reward
    expInfo.durITI = 2;         % duration of ITI
    
    expInfo.timing = 'relativeITI';

    expInfo.trialDuration.all = expInfo.durFixCue+expInfo.durPres+expInfo.durResp+expInfo.durConf+expInfo.durITI;
    expInfo.trialDuration.durFixCue = expInfo.durFixCue;
    expInfo.trialDuration.Pres = expInfo.durFixCue+expInfo.durPres;
    expInfo.trialDuration.Resp = expInfo.durFixCue+expInfo.durPres+expInfo.durResp;
    expInfo.trialDuration.Conf = expInfo.durFixCue+expInfo.durPres+expInfo.durResp+expInfo.durConf;
    
    expInfo.confOptions = '2';      % 2 or 4 confidence options
    expInfo.highlightChoice = 1;    % highlight choice by retaining only chosen option?
    
    expInfo.feedback = 0;   % no feedback
    
    expInfo.dirSet          = [180, 0];     % dots in left or right direction
    expInfo.numDotField     = 1;            % show a single dot patches on screen
    expInfo.apXYD           = [0 0 130];    % coordinates and diameter of aperture
    expInfo.speed           = [50];         % speed of dot motion
    expInfo.trialtype       = [2 1 1];      % reaction time, not relevant, keyboard
    expInfo.dotSize         = 3;            % dot size in pixels
    expInfo.maxDotTime      = 2;            % maximum duration of moving dots
    expInfo.fixXY           = [0 0];        % fixation coordinates
    expInfo.fixDiam         = 2;            % fixation diameter
    expInfo.fixColor        = [0 150 200];  % blue fixation dot
    expInfo.fixMinTime      = 0.75;         % minimum fixation
    expInfo.fixMaxTime      = 1.25;         % maximum fixation
    %expInfo.maxDotsPerFrame = 300;          % depends on graphics card
    expInfo.fixTime         = 2;            % JQK: fixed onset fixation time
    expInfo.DotsPerFrame    = 48*3;

    expInfo.breakTime = 60;                   % pause for 60 seconds between runs
    
    % update frequency of on-screen content
    
    expInfo.Hz_RDM  = 30; % kinematogram updates in Hz
    
    % multi-attribute task
    expInfo.MAT.percAtt1H = .60;
    expInfo.MAT.percAtt2H = .60;
    expInfo.MAT.percAtt3H = .65;
    expInfo.MAT.percAtt4H = .65;
    expInfo.MAT.percAtt1L = 1-expInfo.MAT.percAtt1H;
    expInfo.MAT.percAtt2L = 1-expInfo.MAT.percAtt2H;
    expInfo.MAT.percAtt3L = 1-expInfo.MAT.percAtt3H;
    expInfo.MAT.percAtt4L = 1-expInfo.MAT.percAtt4H; 
    
    %expInfo.MAT.color = [255 255 255; 255 0 0];                            % define dot color
    %expInfo.MAT.color = [177,213,57; 234,35,93];                           % define dot color
    
    % saturated & muted
    expInfo.MAT.color  = [174,205,96; 203,117,143];
    expInfo.MAT.color1 = [174,205,96; 203,117,143];                           % define dot color
    expInfo.MAT.color2 = [177,213,57; 234,35,93];                           % green first, then red
    
%     % light & dark
%     expInfo.MAT.color  = [222,235,151; 241,147,186];
%     expInfo.MAT.color1 = [222,235,151; 241,147,186];                        % define dot color
%     expInfo.MAT.color2 = [125,155,64; 160,26,67];
%     
    %expInfo.MAT.coherence = 1;                                             % define dot movement (coherence)
    expInfo.MAT.coherence = .65;                                            % define dot movement (coherence)
    expInfo.MAT.direction = [180 0];                                        % left and right
    expInfo.MAT.size = [5 8];                                               % define dot size
    expInfo.MAT.saturation = [1,2];                                          % define dot luminance
    expInfo.MAT.attNames = {'color'; 'direction'; 'size'; 'saturation'};
    expInfo.MAT.attNamesDE = {'Farbe'; 'Richtung'; 'Gre'; 'Sttigung'};
    
    %% feedback
    
    expInfo.RTfeedback.reward = 20;
    expInfo.RTfeedback.loss = 0;
    expInfo.RTfeedback.slack = .2; % seconds allowed below median RT
    expInfo.RTfeedback.type = 'fixed'; % 'fixed' vs. 'RT'
    expInfo.RTfeedback.fixedFeedback = [ones(1,25), zeros(1,7)];
    expInfo.RTfeedback.fixedFeedback = expInfo.RTfeedback.fixedFeedback(randperm(32));
    expInfo.RTfeedback.fixedFeedback = reshape(expInfo.RTfeedback.fixedFeedback, [], 4)';

    %% specify keys
    % Use OS X keyboard naming scheme across all plattforms
    % Otherwise LeftControl/RightControl are not recognized
    KbName('UnifyKeyNames');
    expInfo.keyLeft     = [KbName('LeftControl'), KbName('LeftAlt'), KbName('LeftArrow'), KbName('1!'),KbName('2@')];    % left response
    expInfo.keyRight    = [KbName('RightControl'), KbName('RightAlt'), KbName('RightArrow'),KbName('6^'),KbName('7&')];  % right response
    expInfo.keyConf1    = [KbName('LeftControl'), KbName('LeftArrow'), KbName('1!')];       % lowest confidence
    expInfo.keyConf2    = [KbName('LeftAlt'), KbName('2@')];                                % intermediate confidence low
    expInfo.keyConf3    = [KbName('RightAlt'),KbName('6^')];                                % intermediate confidence high
    expInfo.keyConf4    = [KbName('RightControl'), KbName('RightArrow'),KbName('7&')];      % highest confidence
    expInfo.keyModifier = KbName('LeftAlt'); % to prevent accidental input
    expInfo.keyEscape   = KbName('Escape'); %
    expInfo.keyReturn   = [KbName('Return'), KbName('7&')]; % continue experiment
    expInfo.keyPause    = KbName('p');

    %% randomize stimuli and non-target duration
    
    % set random seed

    rseed = sum(100*clock);
    rng(rseed,'twister');
    [expInfo.rngSetting] = rng;
    
    %% Here we need to decide the following settings:
    
    %  1. How many attribute dimensions (i.e. state manipulation)? [block-wise to avoid 'meta-four state']
    %  2. Which attributes to be chosen? Same in each block?
    %  3. Which target in each trial?
    %  4. Which option of the attribute is winning?
    
    %% decide cueing state order (1/2/3/4) & higher probability choice (within attribute)
    
    expInfo.blockLengthDim = 8; % amount of consecutive trials belonging to the same state dimension block; needs to be a multiple of 4
    
    expInfo.blockAmount     = (expInfo.trialsPerAtt*expInfo.numOfAtt*expInfo.numOrders)/expInfo.blockLengthDim; % amount of blocks (i.e. determined by total trial count and block length) 
    expInfo.blocksPerOrd    = expInfo.blockAmount/expInfo.numOrders;                        % amount of blocks per state dimension
    expInfo.StateOrder      = NaN(expInfo.blockAmount, expInfo.blockLengthDim);             % prelim. matrix for state dimension order
    expInfo.AttCues         = cell(expInfo.blockAmount, expInfo.blockLengthDim);            % prelim. cell struc for attribute cues
    expInfo.targetAtt       = NaN(expInfo.blockAmount, expInfo.blockLengthDim);             % prelim. matrix for target attribute
    expInfo.targetOption    = NaN(expInfo.blockAmount, expInfo.blockLengthDim);             % prelim. matrix for target option
    expInfo.HighProbChoice  = cell(expInfo.blockAmount, expInfo.blockLengthDim);            % prelim. cell struc for winning options
    
    expInfo.blockTime = expInfo.durBlockOnset+expInfo.blockLengthDim*...
        (expInfo.durCue+expInfo.durPres+expInfo.durResp+expInfo.durConf+expInfo.durReward+expInfo.durITI);
    
    % get amounts of runs to achieve approx. 10 min per run
    
    %expInfo.runAmount = ceil(expInfo.blockAmount*expInfo.blockTime/60/10);
    expInfo.runAmount = expInfo.blocksPerOrd/2; % now 4 runs! rather go for many runs vs. not including many breaks
    expInfo.blocksPerRun = 8;
    
    % Pseudo-randomize the block order, i.e. allowing for repeting dimension blocks.
    % This is performed run-wise, such that each run contains a single
    % block of each state order. We also make sure that there are no
    % adjacent repeats of dimension blocks.
    
    criterion = 0;
    while criterion == 0
        allCombsBlocks = perms([1,2,3,4]);
        chosenBlockOrders = randperm(size(allCombsBlocks,1),expInfo.blocksPerRun); % have two dimension blocks each iteration
        blockDimOrder = reshape(allCombsBlocks(chosenBlockOrders,:)',[],1);
        if min(abs(diff(blockDimOrder))) ~= 0 % check that there are no repeats
            criterion = 1;
        end
    end
    expInfo.StateOrder = repmat(blockDimOrder,1,expInfo.blockLengthDim); % final state order output for presentation
    
%     blockDimOrder = repmat(1:4,1,16); tmp_rand = randperm(expInfo.blockAmount);   
%     blockDimOrder = blockDimOrder(tmp_rand);
%     expInfo.StateOrder = repmat(blockDimOrder', 1, expInfo.blockLengthDim);            % final state order output for presentation
    
    % get combinatorials for attribute cues for each dimension order
    
    for indOrd = 1:expInfo.numOrders
        combsDim{indOrd} = nchoosek([1:expInfo.numOfAtt], indOrd); % 4, 6, 4, 1
    end
    
    for indOrd = 1:expInfo.numOrders
        tmp_blocks = find(blockDimOrder == indOrd);
        tmp_blockCues = repmat(combsDim{indOrd},floor(numel(tmp_blocks)/size(combsDim{indOrd},1)),1);
        if indOrd == 2 % there are 6 options, hence add two more; important: add all attributes 1-4!
            tmp_blockCues = [tmp_blockCues; combsDim{indOrd}(1,:); combsDim{indOrd}(end,:)]; 
        end
        rand.blockCues(indOrd,:) = randperm(size(tmp_blockCues,1));
        for indBlock = 1:numel(tmp_blocks)
            expInfo.AttCues(tmp_blocks(indBlock),:) = {tmp_blockCues(rand.blockCues(indOrd,indBlock),:)}; % encode attribute cues
        end
    end
    
    %% determine target attribute
    
    % The logic here is the following: We now have blocks, in which the
    % same state order and the same attribute targets are presented. Now,
    % wihtin those attribute options, but across blocks, we choose trials
    % such that each target attribute will occur the same number of times
    % within-order (but not necessarily within-cue combination or block).
    % Then we also choose half of the target attribute trials randomly and
    % allocate them to the target option (i.e. red/white), such that these
    % are also matched in amount within-attribute. The target attribute
    % matching is done based on the groups of cue conjunctions.
    
    % Note that the current procedure does no make sure, that e.g. every
    % option occurs within each cue block.
    
    indCatch = [];
    for indOrd = 1:4
        
        disp(num2str(indOrd));
        
        Splits = [];
        
        % for all attributes, get location of the dimension trials among all trials
        % trial attributes are assigned among these
        for indAtt = 1:4
            index = cellfun(@(x) ismember(indAtt,x), expInfo.AttCues(blockDimOrder==indOrd,:), 'UniformOutput', 0);
            indCatch{indOrd, indAtt} = find(cell2mat(index));
        end
        
        if indOrd == 1
            idxCurrentOrder = find(expInfo.StateOrder == indOrd); % indexes trials of current state order
            [row, ~] = ind2sub(size(expInfo.targetAtt),idxCurrentOrder); row = unique(row);
            expInfo.targetAtt(row,:) = repmat(cell2mat(expInfo.AttCues(row,1)),1,8);
        end
        
        if indOrd == 2
            Splits{1} = intersect(indCatch{indOrd, 1}, indCatch{indOrd, 2}); % 1 1 0 0
            Splits{2} = intersect(indCatch{indOrd, 2}, indCatch{indOrd, 3}); % 0 1 1 0
            Splits{3} = intersect(indCatch{indOrd, 2}, indCatch{indOrd, 4}); % 0 1 0 1
            Splits{4} = intersect(indCatch{indOrd, 3}, indCatch{indOrd, 4}); % 0 0 1 1
            Splits{5} = intersect(indCatch{indOrd, 1}, indCatch{indOrd, 3}); % 1 0 1 0
            Splits{6} = intersect(indCatch{indOrd, 1}, indCatch{indOrd, 4}); % 1 0 0 1
            extractMat = [1 1 0 0; 0 1 1 0; 0 1 0 1; 0 0 1 1; 1 0 1 0; 1 0 0 1];
        end
            
        if indOrd == 3
            Splits{1} = intersect(intersect(indCatch{indOrd, 1}, indCatch{indOrd, 2}), indCatch{indOrd, 3}); % 1 2 1 0
            Splits{2} = intersect(intersect(indCatch{indOrd, 2}, indCatch{indOrd, 3}), indCatch{indOrd, 4}); % 0 1 2 1
            Splits{3} = intersect(intersect(indCatch{indOrd, 1}, indCatch{indOrd, 3}), indCatch{indOrd, 4}); % 1 0 1 2
            Splits{4} = intersect(intersect(indCatch{indOrd, 1}, indCatch{indOrd, 2}), indCatch{indOrd, 4}); % 2 1 0 1
            % split into four groups to distribute (unequally)
            extractMat = [1,2,1,0; 0,1,2,1; 1,0,1,2; 2,1,0,1]; % amount of quartets to be extracted; row: triplet, column: attribute
            % Note that due to the fixed allocation, there will always be
            % an imbalance of the attributes within each cue condition.
        end % 3 state dimension
        
        if indOrd == 4
            splitVec = [1:64/4:numel(indCatch{indOrd, 1}), 65]; % create artificial splits to help pseudo-randomisation
            for indSplit = 1:4
                selectTrials = sub2ind(size(expInfo.AttCues(blockDimOrder==indOrd,:)), ...
                    [repmat(((indSplit-1)*2+1),8,1); repmat(((indSplit-1)*2+2),8,1)], [1:8, 1:8]');
                Splits{indSplit} = selectTrials;
                extractMat = [1,1,1,1; 1,1,1,1; 1,1,1,1; 1,1,1,1];
            end;
        end
                
        %% fix switch probability & select attribute targets
                
        if ismember(indOrd, [2:4])
            for indSplit = 1:numel(Splits)
                check = 0;
                while check == 0 % try to find pseudo-randomization that works
                    try
                        % pseudo-randomize to start block with no-switch
                        % have a maximum of 3 repetitions (i.e. 4 identical trials)
                        while check == 0
                            switchVec = [zeros(1,.5*numel(Splits{indSplit})),ones(1,.5*numel(Splits{indSplit}))];
                            switchVec_rand = randperm(numel(switchVec));
                            switchVec = switchVec(switchVec_rand);
                            % check for repetitions
                            A = switchVec';
                            J = find(diff([A(1)-1; A]));
                            if max(diff([J; numel(A)+1])) <= 3 & A(1:8:end)==0
                                check = 1;
                            end
                        end
                        % fill with attributes: 
                        % sequential allocation without replacement
                        % start with most numerous option
                        if indOrd == 4
                            availableOptions = repelem([1:4], 4.*extractMat(indSplit,:));
                            mostCommon = find(extractMat(indSplit,:)==1);
                            mostCommon = mostCommon(1);
                        elseif indOrd == 3
                            availableOptions = repelem([1:4], 4.*extractMat(indSplit,:));
                            mostCommon = find(extractMat(indSplit,:)==2);
                        elseif indOrd == 2
                            availableOptions = repelem([1:4], numel(Splits{indSplit})/2.*extractMat(indSplit,:));
                            mostCommon = find(extractMat(indSplit,:)==1);
                            mostCommon = mostCommon(1);
                        end
                        tmp_availableCats = unique(availableOptions);
                        switchVec_atts = NaN(1,numel(availableOptions));
                        for indTrial = 1:numel(switchVec)
                            if switchVec(indTrial) == 0 & indTrial == 1
                                switchVec_atts(indTrial) = mostCommon;
                            elseif switchVec(indTrial) == 0
                                switchVec_atts(indTrial) = switchVec_atts(indTrial-1);
                            elseif switchVec(indTrial) == 1
                                lastAnwer = switchVec_atts(indTrial-1);
                                nextItem = find(tmp_availableCats>lastAnwer);
                                if isempty(nextItem)
                                    nextItem = tmp_availableCats(1);
                                else nextItem = tmp_availableCats(nextItem(1));
                                end
                                switchVec_atts(indTrial) = nextItem;
                            end
                            % remove last encoded from list (i.e. choose without replacement)
                            tmp_cur = find(availableOptions == switchVec_atts(indTrial));
                            availableOptions(tmp_cur(1)) = [];
                        end
                    catch % if randomization does not work out, start again ...
                        check = 0;
                    end % try
                end % while
                % randomize order of chunks within each block
                tmp_randBlocks = reshape(switchVec_atts,8,[])';
                for rowInd = 1:size(tmp_randBlocks,1)
                    tmp_split = SplitVec(tmp_randBlocks(rowInd,:));
                    tmp_split_length = sort(SplitVec(tmp_randBlocks(rowInd,:), 'equal','length'),'ascend');
                    check = 0;
                    while check == 0 % make sure nothing changes to the number of chunks
                        tmp_split2 = tmp_split(randperm(numel(tmp_split)));                        
                        tmp_split2_length = sort(SplitVec([cell2mat(tmp_split2)], 'equal','length'),'ascend');
                        if isequal(tmp_split_length, tmp_split2_length)
                            check = 1;
                            tmp_randBlocks(rowInd,:) = [cell2mat(tmp_split2)];
                        end
                    end
                end
                % allocate attributes to trials
                idxCurrentOrder = find(expInfo.StateOrder == indOrd); % indexes trials of current state order
                [row, ~] = ind2sub(size(expInfo.targetAtt),idxCurrentOrder(Splits{indSplit}));
                row = unique(row);
                expInfo.targetAtt(row,:) = tmp_randBlocks;
            end % split loop
        end
            
        %% determine target choice
        
        % for each attribute, randomize within-order, which option will be the winner
        for indAttribute = 1:4
            idxCurrentOrder = find(expInfo.StateOrder == indOrd);
            tmp_curTrials = find(expInfo.targetAtt(idxCurrentOrder) == indAttribute);
            tmp_curTrialsPerm = reshape(tmp_curTrials(randperm(numel(tmp_curTrials))),2,[]);
            expInfo.targetOption(idxCurrentOrder(tmp_curTrialsPerm(1,:))) = 1;
            expInfo.targetOption(idxCurrentOrder(tmp_curTrialsPerm(2,:))) = 2;
        end; clear tmp*
        
    end % state order loop
        
    %% make sure that each block has all cue options occuring
    % This would mess up the transition probability slightly, but it is
    % rare that a correction is necessary anyways.
        
    check = zeros(size(expInfo.targetAtt,1),2);                             % index, whether block fulfills requirements
    while min(check(:,1)) == 0                                              % while matching is not done, go through all blocks again
        for indBlock = 1:size(expInfo.targetAtt,1)
           % check whether all cued trials are available
           TransProb.cuedOptions = expInfo.AttCues{indBlock,1};
           while check(indBlock,1) == 0
               TransProb.availOptions = unique(expInfo.targetAtt(indBlock,:));
               TransProb.missingOptions = setdiff(TransProb.cuedOptions, TransProb.availOptions);
               if isempty(TransProb.missingOptions)                             % all options available
                   check(indBlock,1) = 1;
               else                                                             % not all options available
                   disp('Not all options occur. Readjusting ...')
                   warning('You should re-check transition probabilities.')
                   check(indBlock,1) = 0;
                   % exchange most frequent option with another trial
                   % sort available options in their order of frequency
                   [tmp_histn,~]=histcounts(expInfo.targetAtt(indBlock,:));
                   [~, tmp_sort_histn] = sort(tmp_histn(tmp_histn~=0), 'descend');
                   TransProb.availOptions = TransProb.availOptions(tmp_sort_histn);
                   % get trials of current state order (only exchange within
                   % order!!!) & missing attribute
                   TransProb.relevantTrials = expInfo.StateOrder == expInfo.StateOrder(indBlock,1) & expInfo.targetAtt == TransProb.missingOptions(1);
                   % buffer targetAtt & targetOption of the to-be-swapped trials
                   TransProb.tAttGo_avail = find(expInfo.targetAtt(indBlock,:)==TransProb.availOptions(1));
                   TransProb.tAttGoIdx = TransProb.tAttGo_avail(randperm(numel(TransProb.tAttGo_avail),1));
                   TransProb.tAttGoIdx = sub2ind(size(expInfo.targetAtt), indBlock, TransProb.tAttGoIdx); % convert to linear index
                   TransProb.tAttGoAtt = expInfo.targetAtt(TransProb.tAttGoIdx);
                   TransProb.tAttGoOpt = expInfo.targetOption(TransProb.tAttGoIdx);
                   TransProb.tAttGet_avail = find(TransProb.relevantTrials);
                   TransProb.tAttGetIdx = TransProb.tAttGet_avail(randperm(numel(TransProb.tAttGet_avail),1));
                   TransProb.tAttGetAtt = expInfo.targetAtt(TransProb.tAttGetIdx);
                   TransProb.tAttGetOpt = expInfo.targetOption(TransProb.tAttGetIdx);
                   % do the switch
                   expInfo.targetAtt(TransProb.tAttGoIdx) = TransProb.tAttGetAtt;
                   expInfo.targetAtt(TransProb.tAttGetIdx) = TransProb.tAttGoAtt;
                   expInfo.targetOption(TransProb.tAttGoIdx) = TransProb.tAttGetOpt;
                   expInfo.targetOption(TransProb.tAttGetIdx) = TransProb.tAttGoOpt;
               end
           end
        end
    end; clear TransProb tmp*;
    
    % figure; subplot(1,2,1); imagesc(expInfo.targetAtt); subplot(1,2,2); imagesc(expInfo.StateOrder);
    
    %% sanity check transition probability, number of presented attributes
    
	for indDim = 1:4
        idxCurrentOrder = find(expInfo.StateOrder(:,1) == indDim);
        idxCurrentOrder_mat = find(expInfo.StateOrder == indDim);
        % check number of presented attributes
        for indAtt = 1:4
            PresentedAttNum(indDim, indAtt) = numel(find(expInfo.targetAtt(idxCurrentOrder,:)==indAtt));
            PresentedAttNum_low(indDim, indAtt) = numel(find(expInfo.targetOption(idxCurrentOrder_mat(expInfo.targetAtt(idxCurrentOrder,:)==indAtt))==1));
            PresentedAttNum_high(indDim, indAtt) = numel(find(expInfo.targetOption(idxCurrentOrder_mat(expInfo.targetAtt(idxCurrentOrder,:)==indAtt))==2));
        end
        % check switching probability
        SwitchProb_no(indDim) = numel(find(abs(diff([expInfo.targetAtt(idxCurrentOrder,1), expInfo.targetAtt(idxCurrentOrder,:)],[],2))==0));
        SwitchProb_yes(indDim) = numel(find(abs(diff([expInfo.targetAtt(idxCurrentOrder,1), expInfo.targetAtt(idxCurrentOrder,:)],[],2))> 0));
    end
    [PresentedAttNum, [NaN; NaN; NaN; NaN], PresentedAttNum_low,[NaN; NaN; NaN; NaN], PresentedAttNum_high, [NaN; NaN; NaN; NaN], SwitchProb_no', SwitchProb_yes']
    
    %% select parameters of remaining attributes one each trial
    
    % these are chosen such that within each dimension and attribute, all
    % other parameter constellations are presented (i.e. the 16 combinations 
    % should be presented in each category of the design)
    
    combs = allcomb([1,2],[1,2],[1,2],[1,2]); % Note that 1 & 2 refer to the higher/lower prob option here.
    
    % The target option is always already fixed as done above. This leaves
    % eight remaining combinations for each multi-attribute display that
    % should be allocated within-order, within-target-attribute.
    
    % 1. get current state dim order
    % 2. get current attribute
    % 3. get high/low option
    % 4. distribute the remaining categories
    
    for indOrd = 1:4
        for indAtt = 1:4
            for indChoice = 1:2
                idxCurrentOrder_l1 = find(expInfo.StateOrder == indOrd); % indexes trials of current state order
                idxCurrentAtt_l2 =  find(expInfo.targetAtt(idxCurrentOrder_l1) == indAtt);
                indCurrentChoice_l3 = find(expInfo.targetOption(idxCurrentOrder_l1(idxCurrentAtt_l2)) == indChoice);
                indCombined = idxCurrentOrder_l1(idxCurrentAtt_l2(indCurrentChoice_l3));
                % get combinations with current parameters (regarding target attribute & choice)
                curCombs = combs(combs(:,indAtt)==indChoice,:);
                % randomize trials
                indRecomb = indCombined(randperm(numel(indCombined)));
                % repeat to match amount of trials
                curCombs = repmat(curCombs, numel(indRecomb)/size(curCombs,1),1);
                for indTrial = 1:numel(indRecomb)
                    indTargetTrial = indRecomb(indTrial);
                    expInfo.HighProbChoice{indTargetTrial} = curCombs(indTrial,:);
                end
            end % choice
        end % attribute
    end % order
    
    %% put everything into block wrappers
    
    edges = 1:expInfo.blocksPerRun:32+1;
    for indRun = 1:expInfo.runAmount
        expInfo.StateOrderRun{indRun} = expInfo.StateOrder(edges(indRun):edges(indRun+1)-1,:);
        expInfo.AttCuesRun{indRun} = expInfo.AttCues(edges(indRun):edges(indRun+1)-1,:);
        expInfo.targetAttRun{indRun} = expInfo.targetAtt(edges(indRun):edges(indRun+1)-1,:);
        expInfo.targetOptionRun{indRun} = expInfo.targetOption(edges(indRun):edges(indRun+1)-1,:);
        expInfo.HighProbChoiceRun{indRun} = expInfo.HighProbChoice(edges(indRun):edges(indRun+1)-1,:);
    end
    
    
end