ft_entropyanalysis.m 23.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
function mse = ft_entropyanalysis(cfg, data)

% FT_ENTROPYANALYSIS performs entropy and time-entropy analysis
% on time series data over multiple trials
%
% Use as
%   mse = ft_entropyanalysis(cfg, data)
%
% The input data should be organised in a structure as obtained from
% the FT_PREPROCESSING function. The configuration
% depends on the type of computation that you want to perform.
%
% cfg is a configuration structure that should contain
%
%  cfg.toi        = vector 1 x numtoi, the times on which the analysis
%                    windows should be centered (in seconds), or TODO a string
%                    such as '50%' or 'all' (default).  Both string options
%                    use all timepoints available in the data, but 'all'
%                    centers an entropy estimate on each sample, whereas
%                    the percentage specifies the degree of overlap between
%                    the shortest time windows from cfg.timwin.
%  cfg.timwin     = vector 1 x numfoi, length of time window (in seconds)
%  cfg.timescales = vector 1 x numtimescales, the time scales to compute MSE for.
%                   Scale 1 is the fastest scale, i.e. sample entropy at the native
%                   sampling rate of the signal. Slower scales are achieved
%                   by coarse graining the data. The highest scales achievable
%                   is determined by pattern length m and the time window timwin: at
%                   least m+1 samples need to be present in the time window
%                   for MSE computation at this scale.
%  cfg.coarsegrainmethod = string, method used for coarse%  graining:'filt_skip'
%                    (default) (filter, then skip points) or 'pointavg'
%                    (average groups of timepoints)
%  cfg.filtmethod = string, method used for filtering: {lp, hp, bp, no}
%  cfg.m          = pattern length for MSE computation, default is 2
%  cfg.r          = similarity criterion, set as a fraction of the time
%                   series SD. Default is 0.5.
37
%  cfg.recompute_r = recompute r parameter. 'perscale' or 'perscale_toi_sp'
38
%                   (default)
39
40
41
42
43
44
45
%   cfg.polyremoval = number (default = 0), specifying the order of the
%                     polynome which is fitted and subtracted from the time
%                     domain data prior to the spectral analysis. For
%                     example, a value of 1 corresponds to a linear trend.
%                     The default is a mean subtraction, thus a value of 0.
%                     If no removal is requested, specify -1.
%                      see FT_PREPROC_POLYREMOVAL for details
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
%  cfg.mem_available = Memory available to perform computations (default
%                     8e9 bytes).
%  cfg.allowgpu     = 1 to use gpu if available, 0 to force
%                     cpu computation (default 1). if a gpu is found,
%                     available memory on that gpu is used.
%
%
% The configuration can optionally contain
%   cfg.option3   = value, explain it here (default is automatic)
%
% To facilitate data-handling and distributed computing you can use
%   cfg.inputfile   =  ...
%   cfg.outputfile  =  ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also <<give a list of function names, all in capitals>>

% Copyright (C) 2018, MPIB Berlin, Niels Kloosterman
%
% Here comes the Revision tag, which is auto-updated by the version control system
% $Id$

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the initial part deals with parsing the input options and data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin   = nargin;
ft_nargout  = nargout;

% do the general setup of the function

% the ft_preamble function works by calling a number of scripts from
% fieldtrip/utility/private that are able to modify the local workspace

ft_defaults                   % this ensures that the path is correct and that the ft_defaults global variable is available
ft_preamble init              % this will reset ft_warning and show the function help if nargin==0 and return an error
ft_preamble debug             % this allows for displaying or saving the function name and input arguments upon an error
ft_preamble loadvar    data % this reads the input data in case the user specified the cfg.inputfile option
ft_preamble provenance data % this records the time and memory usage at the beginning of the function
ft_preamble trackconfig       % this converts the cfg structure in a config object, which tracks the cfg options that are being used

% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
94
95
    % do not continue function execution in case the outputfile is present and the user indicated to keep it
    return
96
97
98
99
100
101
102
103
104
105
106
107
end

% ensure that the input data is valid for this function, this will also do
% backward-compatibility conversions of old data that for example was
% read from an old *.mat file
data = ft_checkdata(data, 'datatype', {'raw+comp', 'raw'}, 'feedback', 'yes', 'hassampleinfo', 'yes');

% % TODO check if the input cfg is valid for this function
% cfg = ft_checkconfig(cfg, 'renamed',     {'blc', 'demean'});
% cfg = ft_checkconfig(cfg, 'renamed',     {'blcwindow', 'baselinewindow'});

% ensure that the required options are present
108
cfg = ft_checkconfig(cfg, 'required', {'toi', 'timescales' 'filtmethod'});
109
110

% ensure that the options are valid
111
112
113
cfg = ft_checkopt(cfg, 'recompute_r', 'char', {'perscale_toi_sp', 'per_scale', 'per_toi'});
cfg = ft_checkopt(cfg, 'coarsegrainmethod', 'char', {'filtskip', 'pointavg'});
cfg = ft_checkopt(cfg, 'filtmethod', 'char', {'lp', 'hp', 'bp', 'no'});
114
115
116
117
118
119
120
121
122

% get the options
cfg.trials        = ft_getopt(cfg, 'trials',     'all', 1);
cfg.channel       = ft_getopt(cfg, 'channel',    'all');
toi               = ft_getopt(cfg, 'toi'); % time points for mse, e.g. cfg.toi  = -0.75:0.05:1.5;
timescales        = ft_getopt(cfg, 'timescales'); % time scales, depends on sample rate and winsize
timwin            = ft_getopt(cfg, 'timwin', 0.5); % e.g. 0.5 s
m                 = ft_getopt(cfg, 'm', 2); % pattern length, e.g. 2
r                 = ft_getopt(cfg, 'r', 0.5); % similarity criterion, 0.5
123
polyremoval       = ft_getopt(cfg, 'polyremoval', 0);
124
125
recompute_r       = ft_getopt(cfg, 'recompute_r', 'perscale_toi_sp'); % recompute r for each scale (1)
coarsegrainmethod = ft_getopt(cfg, 'coarsegrainmethod', 'filtskip'); % coarsening_filt_skip or coarsening_avg
126
filtmethod        = ft_getopt(cfg, 'filtmethod', 'lp'); 
127
128
129
130
131
mem_available     = ft_getopt(cfg, 'mem_available', 8e9); % 8 GB
allowgpu          = ft_getopt(cfg, 'allowgpu', 1); % 8 GB

gpuavailable = gpuDeviceCount;
if allowgpu && gpuavailable
132
133
134
    fprintf('GPU device found. Running things there\n')
    gpu = gpuDevice;
    mem_available = gpu.AvailableMemory * 0.6; % only use % of available mem, other vars also required there
135
136
137
138
139
140
141
142
end

% select channels and trials of interest, by default this will select all channels and trials
tmpcfg = keepfields(cfg, {'trials', 'channel', 'showcallinfo'});
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
%[cfg, data] = rollback_provenance(cfg, data);

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
% make sure there are no nans in raw data (e.g. if coming from timelock with var trl lengths)
ntrials = length(data.trial);
cfgtmp = [];
cfgtmp.begsample = nan(ntrials,1);
cfgtmp.endsample = nan(ntrials,1);
for itrial = 1:ntrials
  nonnans = find(~isnan(data.trial{itrial}(1,:)));
  cfgtmp.begsample(itrial,:) = nonnans(1);
  cfgtmp.endsample(itrial,:) = nonnans(end);
end
data = ft_redefinetrial(cfgtmp, data);
clear cfgtmp nonnans

% demean the trials
if polyremoval >= 0
  for itrial = 1:ntrials
    ndatsample = size(data.trial{itrial}, 2);
    data.trial{itrial} = ft_preproc_polyremoval(data.trial{itrial}, polyremoval, 1, ndatsample);
  end
end

164
165
166
167
168
169
170
171
172
% preallocate matrices
nchan = length(data.label);
nscales = length(timescales);
ntoi = size(toi,2);
sampen = nan(nchan, nscales, ntoi);

r_estimate = nan(nchan, nscales, ntoi, nscales); % dimord chan nsc ntoi nstartingpts

for s = 1:numel(timescales) %  loop through timescales
173
    sc = timescales(s);
174
    
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    % apply filtering here
    switch filtmethod
        case 'lp'
            if sc == 1
                data_filt = data;
            else
                fs = data.fsample;
                nyquist = (fs/2);
                fcLowPass = (1/sc)*nyquist;
                if fcLowPass == nyquist
                    fcLowPass = fcLowPass-1;
                end
                [B,A] = butter(6,fcLowPass/nyquist);
                cfg.freq(1,s) = fcLowPass;
                
                padlength = ceil(size(data.trial{1},2)./2); % use half the length of trial 1 as padding (JQK)
                x_pad = cellfun(@(a) ft_preproc_padding(a, 'mean', padlength), data.trial, 'UniformOutput', false );  % add padding
                x_pad = cellfun(@transpose, x_pad, 'UniformOutput', false); % transpose for filtfilt: time x chan
                resamp_x_pad = cellfun(@(x_pad) filtfilt(B,A,x_pad), x_pad, 'UniformOutput', false );  % filter data
                resamp_x_pad = cellfun(@transpose, resamp_x_pad, 'UniformOutput', false); % transpose back : chan x time again
                resamp_x = cellfun(@(resamp_x_pad) ft_preproc_padding(resamp_x_pad, 'remove', padlength), resamp_x_pad, 'UniformOutput', false );  % remove padding
                % create data_filt structure
                data_filt = data;
                data_filt.trial = resamp_x;
                clear resamp_* x_pad;
            end
        case 'bp'
            fs = data.fsample;
            nyquist = fs/2;
            fcLowPass = (1/sc)*nyquist;
            if fcLowPass == nyquist
                fcLowPass = fcLowPass-1;
            end
            if s == numel(timescales)
                fcHighPass = 0.5;
            else
                fcHighPass = (1/(timescales(s+1)))*nyquist;
            end
            [B,A] = butter(6,fcLowPass/nyquist);            % define low-pass filter: https://de.mathworks.com/help/signal/ref/butter.html
            [D,C] = butter(6,fcHighPass/nyquist, 'high');   % define high-pass filter
            cfg.freq(1,s) = fcLowPass;
            cfg.freq(2,s) = fcHighPass;
            
            padlength = ceil(size(data.trial{1},2)./2); % use half the length of trial 1 as padding (JQK)
            x_pad = cellfun(@(a) ft_preproc_padding(a, 'mean', padlength), data.trial, 'UniformOutput', false );    % add padding
            x_pad = cellfun(@transpose, x_pad, 'UniformOutput', false);                                                 % transpose for filtfilt: time x chan
            if sc == 1 % only HPF
               resamp_x_pad = cellfun(@(x_pad) filtfilt(D,C,x_pad), x_pad, 'UniformOutput', false );  % high-pass filter data
            else
                resamp_x_pad = cellfun(@(x_pad) filtfilt(B,A,x_pad), x_pad, 'UniformOutput', false );                       % low-pass filter data
                resamp_x_pad = cellfun(@(resamp_x_pad) filtfilt(D,C,resamp_x_pad), resamp_x_pad, 'UniformOutput', false );  % high-pass filter data
            end
            resamp_x_pad = cellfun(@transpose, resamp_x_pad, 'UniformOutput', false);                                   % transpose back : chan x time again
            resamp_x = cellfun(@(resamp_x_pad) ft_preproc_padding(resamp_x_pad, 'remove', padlength), ...                % remove padding
                resamp_x_pad, 'UniformOutput', false );
            %figure; hold on; plot(resamp_x{1}(1,:)); plot(data.trial{1}(1,:))
            % create data_filt structure
            data_filt = data;
            data_filt.trial = resamp_x;
            clear resamp_* x_pad;
        case 'hp'
            fs = data.fsample;
            nyquist = (fs/2);
            fcHighPass = (1/(sc+1))*nyquist;
            [D,C] = butter(6,fcHighPass/nyquist, 'high');   % define high-pass filter
            cfg.freq(1,s) = fcHighPass;
            
            padlength = ceil(size(data.trial{1},2)./2); % use half the length of trial 1 as padding (JQK)
            x_pad = cellfun(@(a) ft_preproc_padding(a, 'mean', padlength), data.trial, 'UniformOutput', false );    % add padding
            x_pad = cellfun(@transpose, x_pad, 'UniformOutput', false);                                                 % transpose for filtfilt: time x chan
            resamp_x_pad = cellfun(@(x_pad) filtfilt(D,C,x_pad), x_pad, 'UniformOutput', false );                       % low-pass filter data
            resamp_x_pad = cellfun(@transpose, resamp_x_pad, 'UniformOutput', false);                                   % transpose back : chan x time again
            resamp_x = cellfun(@(resamp_x_pad) ft_preproc_padding(resamp_x_pad, 'remove', padlength), ...                % remove padding
                resamp_x_pad, 'UniformOutput', false );
            %figure; hold on; plot(resamp_x{1}(1,:)); plot(data_sel.trial{1}(1,:))
            % create data_filt structure
            data_filt = data;
            data_filt.trial = resamp_x;
            clear resamp_* x_pad;
        case 'no'
            data_filt = data;
256
257
    end
    
258
259
260
261
262
263
264
265
    if strcmp(recompute_r, 'per_scale') % recompute r for each scale or: sc toi sp
        % per_scale
        % per_toi
        % pertoi_sp (fixed per scale)
        % perscale_toi_sp (run til now)
        % perscale_toi
        
        r_new = r * std(cell2mat(data_filt.trial),1,2);
266
267
    end
    
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    for itoi = 1:ntoi
        
        fprintf('Scale %d of %d; Time %d of %d\n', s, length(timescales),itoi, ntoi)
        
        % select time window of interest from each trial
        tmpcfg=[];
        tmpcfg.toilim = [toi(itoi)-timwin*0.5 toi(itoi)+timwin*0.5];
        tmpcfg.showcallinfo = 'no';
        data_sel = ft_redefinetrial(tmpcfg, data_filt);
        
        % only take trials that have the whole interval
        tmpcfg = [];
        tmpcfg.minlength = timwin;
        tmpcfg.showcallinfo = 'no';
        data_sel = ft_redefinetrial(tmpcfg, data_sel);
        
        % need 40 samples for mse calc, 3 smp per trial for scale 42: 40/3 = 13.3 trials, make 15
        ntrials = size(data_sel.trial,2);
        if ntrials < 1
            warning('Time point %g: Not enough trials remain', toi(itoi))
            break % subsequent time points will also not work
289
        end
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        
        if strcmp(recompute_r, 'per_toi') % not per scale
            
            % select time window of interest from each trial
            tmpcfg=[];
            tmpcfg.toilim = [toi(itoi)-timwin*0.5 toi(itoi)+timwin*0.5];
            data_sel_unfilt = ft_redefinetrial(tmpcfg, data);
            
            % only take trials that have the whole interval
            tmpcfg = [];
            tmpcfg.minlength = timwin;
            data_sel_unfilt = ft_redefinetrial(tmpcfg, data_sel_unfilt);
            
            % need 40 samples for mse calc, 3 smp per trial for scale 42: 40/3 = 13.3 trials, make 15
            ntrials = size(data_sel_unfilt.trial,2);
            if ntrials < 1
                warning('Time point %g: Not enough trials remain', toi(itoi))
                break % subsequent time points will also not work
308
            end
309
310
311
312
313
314
315
316
            
            % calculate similarity criterion
            r_new = r * std(cell2mat(data_sel_unfilt.trial),1,2);
            nchan = size(data_sel_unfilt.trial{1},1);
        elseif strcmp(recompute_r, 'perscale_toi')
            % calculate similarity criterion
            r_new = r * std(cell2mat(data_sel.trial),1,2);
            nchan = size(data_sel.trial{1},1);
317
318
        end
        
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        % do point skipping
        cg_data = {};
        switch coarsegrainmethod
            case 'filtskip'
                nloops = sc;
                cg_data = cell(nloops,1); % make cell: cg_data{istart}{trials}(chan-by-time)
                resamp_x = data_sel.trial;
                for is = 1:nloops % loop over starting points here!
                    cg_data{is} = cellfun(@(resamp_x) resamp_x(:, is:(sc-1+1):end), resamp_x, 'UniformOutput', false );  % add padding% Filter
                end
                clear resamp_x;
            case 'pointavg' % original point averaging coarse graining, no loop over starting points
                if sc == 1 % no coarse graining for native sampling rate
                    cg_data{1} = data_sel.trial; %only keep trial data
                    nloops = 1; % no loop across starting points
                else % coarse-grain time series at this time scale
                    nloops = 1; % no loop across starting points
                    nchan = size(data_sel.trial{1},1);
                    for itrial = 1:length(data_sel.trial)
                        num_cg_tpts = floor(length(data_sel.trial{itrial})/sc); % number of coarse-grained time points
                        cg_data{1}{itrial} = zeros(nchan, num_cg_tpts); % preallocate cg_data matrix
                        for t = 1:num_cg_tpts % calculate coarse_grained time series
                            cg_data{1}{itrial}(:,t) = mean( data_sel.trial{itrial}(:, (t-1)*sc + [1:sc]) ,2);
                        end
                    end
                end
345
346
        end
        
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        % after coarsegraining, loop mse computation across starting points
        allcont = zeros(sc, nchan, m+1); % start_chan_m
        for istart = 1:nloops
            
            if max(cellfun(@(x) size(x,2), cg_data{istart})) == m % TODO check this at start
                fprintf('Coarse grained trials below %d + 1 samples, skipping remaining starting points\n', m)
                break
            end
            
            %  concatenate trials and convert to single
            y = single(cell2mat(cg_data{istart}));
            
            % collect trial bounds and create mask with valid time points for pats
            trl_bounds = cumsum(cellfun(@(x) size(x,2), cg_data{istart}))';
            trl_mask = true(size(y,2),1);
            if allowgpu && gpuavailable
                trl_mask = gpuArray(trl_mask);
            end
            trl_mask([trl_bounds-1; trl_bounds]) = false;
            
            %  break if n data points < 100 (See Grandy et al., 2016)
            ndatapoints = length(trl_mask); % TODO check this at start
            if ndatapoints < 100
                fprintf('N data points < 100, breaking\n')
                break
            end
            
            %  Calculate sample entropy of coarse grained time series
            if strcmp(recompute_r, 'perscale_toi_sp')
                r_new = r * std(y,1,2);
            end
            
            % keep the estimated r parameter
            r_estimate(:, s, itoi, istart) = r_new; % dimord chan nsc ntoi nstartingpts
            
            % chunk y to keep memory usage in check
            max_numel = mem_available/4; % single = 4 bytes
            chunk_size = round(max_numel/numel(y));
            n_chunks = ceil(size(y,2)/chunk_size);
            temp = 1;
            chunk_borders = zeros(n_chunks,2);
            for ic = 1:n_chunks
                chunk_borders(ic,:) = [temp temp+chunk_size];
                temp = temp+chunk_size-1; % chunks need to overlap to avoid missing pats at chunk borders
            end
            chunk_borders(end) = size(y,2);
            clear temp
            
            %fprintf('starting point %d\n', istart)
            cont = zeros(m+1, n_chunks, nchan);
            y_chunk1 = shiftdim(y', -1 ); % insert singleton dim
            r_new2 = shiftdim(r_new, -2);
            if allowgpu && gpuavailable
                cont = gpuArray(cont);
                y_chunk1 = gpuArray(y_chunk1);
                r_new2 = gpuArray(r_new2);
            end
            
            fprintf('%d chunks: ', n_chunks)
            for ic = 1:n_chunks
                fprintf('%d ', ic)
                
                y_inds = transpose(chunk_borders(ic,1):chunk_borders(ic,2));
                
                y_chunk2 = permute(y_chunk1(1,y_inds,:), [2 1 3]); % insert singleton dim
                if allowgpu && gpuavailable
                    y_chunk2 = gpuArray(y_chunk2);
                end
                
                ymat = bsxfun(@le, abs(bsxfun(@minus, y_chunk1, y_chunk2 )), r_new2 );
                for ichan=1:nchan % loop since triu only supports 2D
                    ymat(:,:,ichan) = triu(ymat(:,:,ichan), chunk_borders(ic,1));
                end
                
                for k = 1:m+1
                    if k >= m % TODO try for m > 2
                        cont(k,ic,:) = sum(reshape(ymat(trl_mask(y_inds(1:end-2)), trl_mask, :), [], nchan));
                    end
                    if k < m+1
                        ymat = ymat & circshift(ymat, [-1 -1 0]);
                    end
                end
                clear ymat y_inds y_chunk2
            end
            
            allcont(istart, :, :) = gather(squeeze(sum(cont,2))'); % sum over chunks. dimord: start_chan_m
            %fprintf('\n')
        end % cg starting points
        
        allcont = sum(allcont,1); % sum counts over starting points
        
        if ndatapoints < 100
            fprintf('N data points < 100, breaking\n')
            break
441
442
        end
        
443
444
445
446
447
448
449
450
451
452
453
        %  calculate sample entropy
        for ichan=1:nchan
            if allcont(1,ichan,m+1) == 0 || allcont(1,ichan,m) == 0
                fprintf('zero patterns found!\n')
                %         nlin_sc = size(pnts,1); % ori THG code
                %         mse(s) = -log(1/((nlin_sc)*(nlin_sc -1)));
                npossiblepats = length(find(trl_mask));
                sampen(ichan,s,itoi) = -log(1/(npossiblepats*(npossiblepats-1)));
            else
                sampen(ichan,s,itoi) = -log(allcont(1,ichan,m+1)./allcont(1,ichan,m)); % same as log(cont(m)/cont(m+1))
            end
454
        end
455
456
        
    end % for toi
457
458
459
460
461
462
463
464
465
466
end % for timescales

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% deal with the output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mse = [];
mse.label = data.label;
mse.fsample = bsxfun(@rdivide, data.fsample, timescales); % sample rates after coarse graining
mse.timescales = 1000 ./ mse.fsample; % by convention
mse.time = toi;
467
mse.dimord = 'chan_timescales_time'; 
468
469
470
471
472
473
474
475
476
477
478
479
480
481
mse.sampen = sampen;
mse.r = squeeze(nanmean(r_estimate,4)); % average across starting points
if isfield(data, 'trialinfo')
  mse.trialinfo = data.trialinfo;
end
mse.config = cfg;

% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug               % this clears the onCleanup function used for debugging in case of an error
ft_postamble trackconfig         % this converts the config object back into a struct and can report on the unused fields
ft_postamble previous   data   % this copies the data.cfg structure into the cfg.previous field. You can also use it for multiple inputs, or for "varargin"
ft_postamble provenance mse  % this records the time and memory at the end of the function, prints them on screen and adds this information together with the function name and MATLAB version etc. to the output cfg
ft_postamble history    mse  % this adds the local cfg structure to the output data structure, i.e. dataout.cfg = cfg
ft_postamble savevar    mse  % this saves the output data structure to disk in case the user specified the cfg.outputfile option